|
Publications
Complete List of Publications
Research Publications:
Note: The number of citations that each publication has received between the time it was published and August 17, 2021 is indicated in parentheses before the article title.
Current H factor = 51 (on August 17, 2021)
Thomson Scientific, the publishers of the Institute of Scientific Information Web of Knowledge determined in 2003 that publications numbered 19 and 20 below had received 82 and 72 citations, respectively, since 2000 placing them in the top 1% of papers cited within this field. According to “Essential Science Indicators” this indicates that these works are highly influential and making a significant impact in my field.
Publication number 19 was the 10th most cited paper in 2003 in the Journal of Physical Chemistry having received 71 citations in 2003, and was only 6 citations behind the most cited paper.
Publication numbers 59 and 60 were the 3rd and 4th most cited papers between 2007 and 2010 in the Journal of Physical Chemistry, and were only 7 and 8 citations behind the most cited paper, respectively.
- Photochemical Aromatic Cyclohexylation
Michael Kurz and Mary Rodgers
J. Chem. Soc. Chem. Comm. 18, 1227-1228 (1985)
DOI: 10.1039/C39850001227
- Low-Energy Collision-Induced Dissociation of Deprotonated Dinucleotides: Determination of the Energetically-Favored Dissociation Pathways and the Relative Acidities of the Nucleic Acid Bases
M. T. Rodgers, Sherrie Campbell, Elaine M. Marzluff and J. L. Beauchamp
Int. J. Mass Spectrom. Ion Proc. 137, 121-149 (1994)
DOI: 10.1016/0168-1176(94)04029-X
- Proton Affinities and Photoelectron Spectra of Phenylalanine, N-Methyl- and N,N-Dimethyl-Phenylalanine. Implications for N-Methylation as an Approach to Charge Localization in Peptides
Sherrie Campbell, Elaine M. Marzluff, M. T. Rodgers, J. L. Beauchamp, Margaret E. Rempe, Kimberly F. Schwinck and D. L. Lichtenberger
J. Am. Chem. Soc. 116, 5257-5264 (1994)
DOI: 10.1021/ja00091a033
- Collisional Activation of Large Molecules is an Efficient Process
Elaine M. Marzluff, Sherrie Campbell, M. T. Rodgers, and J. L. Beauchamp
J. Am. Chem. Soc. 116, 6947-6948 (1994)
DOI: 10.1021/ja00094a064
- Low-Energy Dissociation of Small Deprotonated Peptides in the Gas Phase
Elaine M. Marzluff, Sherrie Campbell, M. T. Rodgers, and J. L. Beauchamp
J. Am. Chem. Soc., 116, 7787-7796 (1994)
DOI: 10.1021/ja00096a040
- Structural and Energetic Constraints on Gas-Hase Hydrogen/Deuterium Exchange Reactions of Protonated Peptides with D2O, CD3OD, CD3CO2D and ND3
Sherrie Campbell, M. T. Rodgers, Elaine M. Marzluff and J. L. Beauchamp
J. Am. Chem. Soc. 116, 9765-9766 (1994)
DOI: 10.1021/ja00100a058
- Site-Specific Protonation Directs Low-Energy Dissociation Pathways in the Gas Phase
M. T. Rodgers, Sherrie Campbell, Elaine M. Marzluff and J. L. Beauchamp
Int. J. Mass Spectrom. Ion Processes, 148, 1-23 (1995)
DOI: 10.1016/0168-1176(95)04177-M
- Deuterium Exchange Reactions as a Probe of Biomolecule Structure. Fundamental Studies of Gas Phase H/D Exchange Reactions of Protonated Glycine Oligomers with D2O, CD3OD, CD3CO2D, and ND3
Sherrie Campbell, M. T. Rodgers, Elaine M. Marzluff and J. L. Beauchamp
J. Am. Chem. Soc., 117, 12840-12854 (1995)
DOI: 10.1021/ja00156a023
- Site-Specific Lithium Ion Attachment Directs Low-Energy Dissociation Pathways of Dinucleotides in the Gas Phase. Applications to Nucleic Acid Sequencing by Mass Spectrometry
M. T. Rodgers and J. L. Beauchamp
Int. J. Mass Spectrom. Ion Processes, 161, 193-216 (1997)
DOI: 10.1016/S0168-1176(96)04435-7
- Statistical Modeling of Collision-Induced Dissociation Thresholds
M. T. Rodgers, K. M. Ervin and P. B. Armentrout
J. Chem. Phys. 106, 4499-4508 (1997)
DOI: 10.1063/1.473494
- Collision-Induced Dissociation Measurements on Li+(H2O)n, n = 1 - 6: the First Direct Measurement of the Li+-OH2 Bond Energy
M. T. Rodgers and P. B. Armentrout
J. Phys. Chem. A 101, 1238-1249 (1997)
DOI: 10.1021/jp962170x
- Absolute Binding Energies of Lithium Ions to Short Chain Alcohols, CnH2n+2O, n = 1 - 4, Determined by Threshold Collision-Induced Dissociation
M. T. Rodgers and P. B. Armentrout
J. Phys. Chem. A 101, 2614-2625 (1997)
DOI: 10.1021/jp970154+
- Guided Ion Beam Studies of the Reactions of Vn+ (n = 2-17) with O2: Bond Energies and Dissociation Pathways
J. Xu, M. T. Rodgers, J. B. Griffin and P. B. Armentrout
J. Chem. Phys. 108, 9339-9350 (1998)
DOI: 10.1063/1.476386
- Statistical Modeling of Competitive Threshold Collision-Induced Dissociation
M. T. Rodgers and P. B. Armentrout
J. Chem. Phys. 109, 1787-1800 (1998)
DOI: 10.1063/1.476754
- Reactions of Cu+(1S, 3D) with O2, CO, CO2, H2O, N2, NO and N2O Studied by Guided Ion Beam Mass Spectrometry
M. T. Rodgers, B. Walker and P. B. Armentrout
Int. J. Mass Spectrom. 182/183, 99-120 (1999). Ben S. Freiser Memorial Issue.
DOI: 10.1016/S1387-3806(98)14228-8
- Absolute Alkali Metal Ion Binding Affinities of Several Azoles Determined by Threshold Collision-Induced Dissociation
M. T. Rodgers and P. B. Armentrout
Int. J. Mass Spectrom. 185/186/187, 359-380 (1999). Michael T. Bowers Special Issue.
DOI: 10.1016/S1387-3806(98)14134-9
- Absolute Binding Energies of Sodium Ions to Short Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory
M. T. Rodgers and P. B. Armentrout
J. Phys. Chem. A. 103, 4955-4963 (1999)
DOI: 10.1021/jp990656i
- Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation
R. Amunugama and M. T. Rodgers
Int. J. Mass Spectrom. 195/196, 439-457 (2000). Robert R. Squires Memorial Issue.
DOI:10.1016/S1387-3806(99)00145-1
- An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory
P. B. Armentrout and M. T. Rodgers
J. Phys. Chem. A. 104, 2238-2247 (2000)
DOI: 10.1021/jp991716n
- Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation
M. T. Rodgers and P. B. Armentrout
Mass Spectrom. Rev. 19, 215-247 (2000)
DOI: 10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
- Noncovalent Interactions of the Nucleic Acid Bases (Uracil, Thymine, and Adenine) with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
M. T. Rodgers and P. B. Armentrout
J. Am. Chem. Soc. 122, 8548-8558 (2000)
DOI: 10.1021/ja001638d
- Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory
M. T. Rodgers, J. R. Stanley, and R. Amunugama
J. Am. Chem. Soc.122, 10969-10978 (2000)
DOI: 10.1021/ja0027923
- Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and Ab Initio Theory: The Methylpyridines
M. T. Rodgers
J. Phys. Chem. A 105, 2374-2383 (2001) Aron Kuppermannn Festschrift
DOI: 10.1021/jp004055z
- Substituent Effects in the Binding of Alkali Metal Ions to Pyridines Studied by Threshold Collision-Induced Dissociation and Ab Initio Theory: The Aminopyridines
M. T. Rodgers
J. Phys. Chem. A 105, 8145-8153 (2001)
DOI: 10.1021/jp011555z
- Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory
R. Amunugama and M. T. Rodgers
J. Phys. Chem. A 105, 9883-9892 (2001)
DOI: 10.1021/jp010663i
- Collision-Induced Dissociation and Theoretical Studies of Na+—Acetonitrile Complexes
A. B. Valina, R. Amunugama, H. Huang, and M. T. Rodgers
J. Phys. Chem. A 105, 11057-11068 (2001)
DOI: 10.1021/jp0128123
- Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x, x = 1–5 from Collision-Induced Dissociation and Theoretical Studies
G. Vitale, A. B. Valina, R. Amunugama, H. Huang, and M. T. Rodgers
J. Phys. Chem. A 105, 11351-11364 (2001)
DOI: 10.1021/jp076449x
- Sigma versus Pi Interactions in Alkali Metal Ion Binding to Azoles: Threshold Collision-Induced Dissociation and Ab Initio Theory Studies
H. Huang and M. T. Rodgers
J. Phys. Chem. A 106, 4277-4289 (2002)
DOI: 10.1021/jp013630b
- The Influence of Substituents on Cation-π Interactions 1: Binding Energies of Alkali Metal Cation-Toluene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
J. Phys. Chem. A 106, 5529-5539 (2002)
DOI: 10.1021/jp014307b
- Influence of d Orbital Occupation on the Binding of Metal Ions to Adenine
M. T. Rodgers and P. B. Armentrout
J. Am. Chem. Soc. 124, 2678-2691 (2002)
DOI: 10.1021/ja011278+
- Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x = 1–5 from Collision-Induced Dissociation and Theoretical Studies
Y. Chu, Z. Yang, and M. T. Rodgers
J. Am. Soc. Mass Spectrom. 13, 453-468 (2002)
DOI:10.1016/S1044-0305(02)00355-0
- The Influence of Substituents on Cation-π Interactions. 2. Binding Energies of Alkali Metal Cation-Fluorobenzene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
J. Phys. Chem. A 106, 9092-9103 (2002)
DOI: 10.1021/jp020459a
- The Influence of Substituents on Cation-π Interactions. 4. Binding Energies of Alkali Metal Cation-Phenol Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
J. Phys. Chem. A 106, 9718-9728 (2002) Jesse. L. Beauchamp Festschrift
DOI: 10.1021/jp0211584
- "Gas Phase Coordination Chemistry” in Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. Vol. 2: Fundamentals
M. T. Rodgers and P. B. Armentrout
Volume Editor, A. B. P. Lever, pp. 141-158 (2003)
DOI: 10.1016/B0-08-043748-6/01119-1
- The Influence of Substituents on Cation-π Interactions. 5. Binding Energies of Alkali Metal Cation-Anisole Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
Int. J. Mass Spectrom. 222, 431-450 (2003) Jesse L. Beauchamp Special Issue
DOI:10.1016/S1387-3806(02)00945-4
- Cation-π Interactions with a Model for an Extended π Network: Binding Energies of Alkali Metal Cation-Naphthalene Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
Int. J. Mass Spectrom. 227, 1-20 (2003)
DOI:10.1016/S1387-3806(03)00039-3
- The Influence of Substituents on Cation-π Interactions. 3. Binding Energies of Alkali Metal Cation-Aniline Complexes Determined by Threshold Collision-Induced Dissociation and Theoretical Studies
R. Amunugama and M. T. Rodgers
Int. J. Mass Spectrom. 227, 339-360 (2003)
DOI:10.1016/S1387-3806(03)00104-0
- Theoretical Studies of the Unimolecular and Bimolecular Tautomerization of Cytosine
Z. Yang and M. T. Rodgers
Phys. Chem. Chem. Phys. 6, 2749-2757 (2004)
DOI: 10.1039/b315089e
- Influence of s and d Orbital Occupation of the Binding of Metal Ions to Imidazole
N. S. Rannulu, R. Amunugama, Z. Yang, and M. T. Rodgers
J. Phys. Chem. A 108, 6385-6396 (2004)
DOI: 10.1021/jp048500s
- Cation-π Interactions: Structures and Energetics of Complexation of Na+ and K+ with the Aromatic Amino Acids: Phenylalanine, Tyrosine, and Tryptophan
C. Ruan, and M. T. Rodgers
J. Am. Chem. Soc. 126, 14600-14610 (2004)
DOI: 10.1021/ja048297e
- A Thermodynamic “Vocabulary” for Metal Ion Interactions in Biological Systems
M. T. Rodgers and P. B. Armentrout
Accts. Chem. Res. 37, 989-998 (2004)
DOI: 10.1021/ar0302843
- Influence of Halogenation on the Properties of Uracil and its Noncovalent Interactions with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
Z. Yang and M. T. Rodgers
J. Am. Chem. Soc. 126, 16217-16226 (2004)
DOI: 10.1021/ja045375p
- Influence of Methylation on the Properties of Uracil and its Noncovalent Interactions with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
Z. Yang and M. T. Rodgers
Int. J. Mass Spectrom. 241, 225-242 (2005) (Awarded the Best Student Paper published in this Journal in 2005)
DOI:10.1016/j.ijms.2004.11.018
- Solvation of Copper Ions by Imidazole: Structures and Sequential Binding Energies of Cu+Lx, x = 1-4. Competition Between Ion Solvation and Hydrogen Bonding
N. S. Rannulu and M. T. Rodgers
Phys. Chem. Chem. Phys. 7, 1014-1025 (2005). Vladimir E. Bondybey Special Issue.
DOI: 10.1039/b418141g
- Cation-π Interactions with a Model for the Side Chain of Tryptophan: Structures and Absolute Binding Energies of Alkali Metal Cation-Indole Complexes
C. Ruan, Z. Yang, N. Hallowita, and M. T. Rodgers
J. Phys. Chem. A 109, 11539-11550 (2005) Jack Simons Festschrift
DOI: 10.1021/jp053830d
- Sodium Cation Affinities of MALDI Matrices Determined by Guided Ion Beam Mass Spectrometry: Applications to Benzoic Acid Derivatives
S. D. M. Chinthaka, Y. Chu, and M. T. Rodgers
J. Phys. Chem. A 110, 1426-1437 (2006) William L. Hase Festschrift
DOI: 10.1021/jp054698k
- Influence of Thioketo Substitution on the Properties of Uracil and its Noncovalent Interactions of Uracil with Alkali Metal Ions. Threshold Collision-Induced Dissociation and Theoretical Studies
Z. Yang and M. T. Rodgers
J. Phys. Chem. A. 110, 1455-1468 (2006) William L. Hase Festschrift
DOI: 10.1021/jp054849j
- Specificity of Human Thymine DNA Glycosylase Depends on N-Glycosidic Bond Stability
M. T. Bennett, M. T. Rodgers, A. S. Hebert, L. E. Ruslander, L. Eisele, and A. C. Drohat
J. Am. Chem. Soc. 128, 12510-12519 (2006)
DOI: 10.1021/ja0634829
- Noncovalent Interactions of Cu+ with N-Donor Ligands (Pyridine, 4,4-Dipyridyl, 2,2-Dipyridyl, and 1,10-Phenanthroline): Collision-Induced Dissociation and Theoretical Studies
N. S. Rannulu and M. T. Rodgers
J. Phys. Chem. A 111, 3465-3479 (2007)
DOI: 10.1021/jp066903h
- Potassium Cation Affinities of MALDI Matrices Determined by Guided Ion Beam Mass Spectrometry: Applications to Benzoic Acid Derivatives
S. D. M. Chinthaka and M. T. Rodgers
J. Phys. Chem. A 111, 8152-8162 (2007)
DOI: 10.1021/jp0667238
- Probing the Potential Energy Landscape for Dissociation of Protonated Indole via Threshold Collision-Induced Dissociation and Theoretical Studies
Z. Yang, H. Ahmed, and M. T. Rodgers
Int. J. Mass Spectrom. 265, 388-400 (2007) Jean H. Futrell Honor Issue
DOI:10.1016/j.ijms.2007.06.016
- A Critical Evaluation of the Experimental and Theoretical Determination of Lithium Cation Affinities
M. T. Rodgers and P. B. Armentrout
Int. J. Mass Spectrom. 267, 167-182 (2007) Sharon G. Lias Memorial Issue
DOI:10.1016/j.ijms.2007.02.034
- Cation-π Interactions with a π-Excessive Nitrogen Heterocycle: Structures and Absolute Binding Energies of Alkali metal Cation-Pyrrole Complexes
C. Ruan, Z. Yang, and M. T. Rodgers
Int. J. Mass Spectrom. 267, 233-247 (2007) Sharon G. Lias Memorial Issue
DOI:10.1016/j.ijms.2007.02.041
- Influence of the d Orbital Occupation on the Nature and Strength of Copper Cation-π Interactions: Threshold Collision-Induced Dissociation and Theoretical Studies
C. Ruan, Z. Yang, and M. T. Rodgers
Phys. Chem. Chem. Phys. 9, 5902-5918 (2007)
DOI: 10.1039/b709820k
- Modeling Metal Cation-Phosphate Interactions in Nucleic Acids in the Gas Phase: Alkali Metal Cations and Triethyl Phosphate
C. Ruan, H. Huang, and M. T. Rodgers
J. Phys. Chem. A 111, 13521-13527 (2007)
DOI: 10.1021/jp076449x
- A Simple Model for Metal Cation-Phosphate Interactions in Nucleic Acids in the Gas Phase: Alkali Metal Cations and Trimethyl Phosphate
C. Ruan, H. Huang, and M. T. Rodgers
J. Am. Soc. Mass Spectrom. 19, 305-314 (2008)
DOI:10.1016/j.jasms.2007.10.006
- Bond Dissociation Energies and Equilibrium Structures of Cu+(MeOH)x, x = 1-6 in the Gas Phase: Competition Between Solvation of the Metal Ion and Hydrogen Bonding Interactions
Z. Yang, N. S. Rannulu, Y. Chu, and M. T. Rodgers
J. Phys. Chem. A 112, 388-401 (2008)
DOI: 10.1021/jp076964v
- Synthesis, Redox and Amphiphilic Properties of Responsive Salycilaldimine-Copper (II) Soft Materials
S. S. Hindo, R. Shakya, N. S. Rannulu, M. J. Heeg, M. T. Rodgers, S. R. P. da Rocha, and C. N. Verani
Inorg. Chem. 47, 3119-3127 (2008)
DOI: 10.1021/ic702233n
- Infrared Multiphoton Dissociation Spectroscopy of Cationized Serine: Effects of Alkali-Metal Cation Size on Gas-Phase Conformation
P. B. Armentrout, M. T. Rodgers, J. Oomens, and J. D. Steill
J. Phys. Chem. A 112, 2248-2257 (2008)
DOI: 10.1021/jp710885a
- Infrared Multiphoton Dissociation Spectroscopy of Cationized Threonine: Effects of Alkali-Metal Cation Size on Gas-Phase Conformation
M. T. Rodgers, P. B. Armentrout, J. Oomens, and J. D. Steill
J. Phys. Chem. A 112, 2258-2267 (2008)
DOI: 10.1021/jp711237g
- Chemical Dynamics Symulations of Energy Transfer in Collisions of Protonated Peptide Ions with a Perfluorinated Alkylthiol Self-Assembled Monolayer Surface
L. Yang, O. A. Mazyar, U. Lourderaj, J. Wang, M. T. Rodgers, E. Martinez-Nunez, S. V. Addepalli, and W. L. Hase
J. Phys. Chem. C 112, 9377-9386 (2008)
DOI: 10.1021/jp712069b
- Dipole Effects on Cation-π Interactions: Absolute Bond Dissociation Energies of Complexes of Alkali Metal Cations to N-Methylaniline and N,N-dimethylaniline
N. Hallowita, D. R. Carl, P. B. Armentrout, and M. T. Rodgers
J. Phys. Chem. A 112, 7996-8008 (2008)
DOI: 10.1021/jp800434v
- Statistical Rate Theory and Kinetic Energy-Resolved Ion Chemistry: Theory and Applications
P. B. Armentout, K. M. Ervin, and M. T. Rodgers
J. Phys. Chem. A 112, 10071-10085 (2008)
DOI: 10.1021/jp805343h
- Noncovalent Interactions of Ni+ with N-Donor Ligands (Pyridine, 4,4-Dipyridyl, 2,2-Dipyridyl, and 1,10-Phenanthroline): Collision-Induced Dissociation and Theoretical Studies
N. S. Rannulu and M. T. Rodgers
J. Phys. Chem.A 113, 4534-4548 (2009) George C. Schatz Festschrift
DOI: 10.1021/jp8112045
- Inductive Effects on Cation-π Interactions: Structures and Bond Dissociation Energies of Alkali Metal Cation-Halobenzene Complexes
N. Hallowita, E. Udonkang, C. Ruan, C. E. Frieler, and M. T. Rodgers
Int. J. Mass Spectrom. 283, 35-47 (2009) Michael T. Bowers Honor Issue
DOI:10.1016/j.ijms.2009.01.006
- Modeling Metal Cation-Phosphate Interactions in Nucleic Acids: Activated Dissociation of Mg+, Al+, Cu+, and Zn+ Complexes of Triethyl Phosphate
C. Ruan and M. T. Rodgers
J. Am.Chem. Soc. 131, 10918-10928 (2009)
DOI: 10.1021/ja8092357
- A Modular Approach to Redox-Active Multimetallic Hydrophobes of Discoid Topology
F. D. Lesh, R. Shanmugam, M. M. Allard, M. Lanznaster, M. J. Heeg, M. T. Rodgers, J. M. Shearer, and C. N. Verani
Inorg. Chem. 49, 7226-7228 (2010)
DOI: 10.1021/ic1009626
- Infrared Multiple Photon Dissociation Spectroscopy of Cationized Cysteine: Effects of Metal Cation Size on Gas-Phase Conformation
M. Citir, E. M. S. Stennett, J. Oomens, J. D. Steill, M. T. Rodgers, and P. B. Armentrout
Int. J. Mass Spectrom. 297, 9-17 (2010) Special Issue on Ion Spectroscopy. DOI:10.1016/j.ijms.2010.04.009
- Infrared Multiple Photon Dissociation Action Spectroscopy of Protonated Uracil and Thiouracils: Effects of Thioketo-Substitution on Gas-Phase Conformation
Y.-w. Nei, T. e. Akinyemi, J. D. Steill, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. 297, 139-151 (2010). Special Issue on Ion Spectroscopy
DOI:10.1016/j.ijms.2010.08.005
- Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure
B. S. Fales, N. O. Fujamade, Y.-w. Nei, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 22, 81-92 (2011).
DOI:10.1007/s13361-010-0007-6
- Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Triethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure
B. S. Fales, N. O. Fujamade, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. (2011)
DOI:
- Infrared Multiple Photon Dissociation Action Spectroscopy of Sodiated Uracil and Thiouracils: Effects of Thioketo-Substitution on Gas-Phase Conformation
Y.-w. Nei, T. e. Akinyemi, J. D. Steill, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. (2011). John R. Eyler Special Issue.
DOI:10.1016/j.ijms.2011.06.019
- (8) “Noncovalent Interactions of Zn+ with N-Donor Ligands (Pyridine, 4,4'-Dipyridyl, 2,2'-Dipyridyl, and 1,10-Phenanthroline”,
N. S. Rannulu and M. T. Rodgers, J. Phys. Chem. A 116, 1319-1332 (2012).
DOI:10.1021/jp207144b
- “Structural and Energetic Effects in the Molecular Recognition of Protonated Peptidomimetic Bases by 18-Crown-6”, Y.Chen and M. T. Rodgers, , J. Am. Chem. Soc. 134, 2313-2324 (2012).
DOI:10.1021/ja21-2345
- “Sodium Cation Affinities of Commonly Used MALDI Matrices Determined by Guided Ion Beam Tandem Mass Spectrometry”, S. D. M. Chinthaka and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 23, 676-689 (2012).
DOI:10.1007/s13361-012-0336-8
- “Tautomerization in the Formation and Collision-Induced Dissociation of Alkali Metal Cation-Cytosine Complexes”, Z. Yang and M. T. Rodgers, Phys. Chem. Chem. Phys. 14, 4517-4526 (2012).
DOI:10.1039/c2cp23794f
- “Structural and Energetic Effects in the Molecular Recognition of Amino Acids by 18-Crown-6”,
Y. Chen and M. T. Rodgers, J. Am. Chem. Soc. 134, 5863-5875 (2012).
DOI: 10.1021/ja211021h
- “Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Cs+ to Gly, Pro, Ser, Thr, and Cys”, P. B. Armentrout, Y. Chen and M. T. Rodgers, J. Phys. Chem. A 116, 3989-3999 (2012).
DOI:10.1021/jp3012766
- “Protonation Preferentially Stabilizes Minor Tautomers of the Halouracils: IRMPD Action Spectroscopy and theoretical Studies”,
K. T. Crampton, A. I. Rathur, Y.-w. Nei, G. Berden, J. Oomens, and M. T. Rodgers, Int. J. Am. Mass Spectrom 23, 1469-1478 (2012). Peter B. Armentrout Honor Issue
DOI: 10.1007/s13361-012-0434-7
- “Alkali Metal Cation Interactions with 12-Crown-4 in the Gas Phase: Revisited”,
P. B. Armentrout, C. A. Austin, and M. T. Rodgers, Int. J. Mass Spectrom. 330-332, 16-26 (2012). Peter B. Armentrout Honor Issue
DOI: 10.1016/j.ijms.2012.06.018
- “Re-evaluation of the Proton Affinity of 18-Crown-6 using Competitive Threshold Collision-Induced Dissociation Techniques”,
Y. Chen M. T. Rodgers, Anal. Chem. 84, 7570-7577 (2012).
DOI: 10.1021/ac301804j
- “Structural and Energetic Effects in the Molecular Recognition of Acetylated Amino Acids by 18-Crown-6”,
Y. Chen and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 23, 2020-2030 (2012).
DOI: 10.1007/s13361-012-0466-z
- “Alkali Metal Cation-Cyclen Complexes: Effects of Alaki Metal Cation Size on the Structure and Binding Energy”,
C. A. Austin, Y. Chen, and M. T. Rodgers,
Int. J. Mass Spectrom. 330-332, 27-34 (2012). Peter B. Armentrout Honor Issue DOI: 10.1016/j.ijms.2012.08.033
- “Thermochemistry of Alkali Metal Cation Interactions with Histidine: Influence of the Side Chain”,
P. B. Armentrout, M. Citir, Y. Chen and M. T. Rodgers, J. Phys. Chem. A, 116, 11823-11832 (2012)
DOI: 10.1021/jp310179c
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated DNA Mononucleotides: Gas-Phase Conformations and Energetics”,
Y. -w. Nei, N. Hallowita, J.D. Steill, J. Oomens, and M. T. Rodgers, J. Phys. Chem A 117, 1319-1335 (2013) Peter B. Armentrout Festschrift
DOI:10.1021/jp3077936
- “Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Rb+ and Cs+ to Met, Phe, tyr, and Trp”,
P. B. Armentrout, B. Yang and M. T. Rodgers, J. Phys Chem. A 117, 3771-3781 (2013). DOI: 10.1021/jp401366g
- “Thermochemistry of Non-Covalent Ion-Molecule Interactions”
P. B. Armentrout and M. T. Rodgers, Mass Spectrometry,2, S0011(2013).
DOI:10.5702/massspectrometry.S0011
- “Energy-Resolved Collision-Induced Dissociation Studies of 1,10-Phenanthroline Complexes of the Late First-Row Divalent Transition Metal Cations: Determination of the Third Sequential Binding Energy”,
H. Nose, Y. Chen and M. T. Rodgers J. Phys. Chem. A 117, 4316-4330 (2013).
DOI: 10.1021/jp401711c
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation”,
B. Yang, R. R. Wu, N. C. Polfer, G. Berden, J. Oomens, and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 24, 1523-1533 (2013).
DOI:10.1007/s13361-013-0689-7
- “Energy-Resolved Collision-Induced Dissociation Studies of 2,2'-Bipyridine Complexes of the Late First-Row Divalent Transition Metal Cations: Determination of the Third Sequential Binding Energy”,
H. Nose andM. T. Rodgers, Chem. Phys. Chem. 78, 1109-1123 2013).
DOI: 10.1002/cplu.201300156
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Alkali Metal Cation-Cyclen Complexes: Effects of Alkali Metal Cation Size on Gas-Phase Conformation”,
C. A. Austin, Y. Chen, C. M. Kaczan, G. Berden, J. Oomens, and M. T. Rodgers, Int. J. Mass Spectrom. 354-355,346-355 (2013).
DOI: 10.1016/j.ijms.2013.08.004
- “Silver Cation Affinities of Monomeric Building Blocks of Polyethers and Polyphenols Determined by Guided Ion Beam Tandem Mass Spectrometry”,,
Y. Chen, S. D. M. Chinthaka, and M. T. Rodgers, J. Phys. Chem. A 117, 8274-8284 (2013).
DOI:10.1021/jp402224t
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Deprotonated RNA Mononucleotides: Gas-Phase Conformations and Energetics”,
Y.-w. Nei, K. T. Crampton, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. A 117, 10634-10648 (2013).
DOI:/10.1021/jp4039495
- “Base-Pairing Energies of Proton Bound Homodimers Determined by Guided Ion Beam Tandem Mass Spectrometry: Application to Cytosine and 5-Substituted Cytosines”,
B. Yang, R.R. Wu, and M. T. Rodgers, Anal. Chem. 85, 11000-11006 (2013).
DOI: 10.1021/ac402542g
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Proton-Bound Dimers of Cytosine and Modified Cytosines: Effects of Modifications on Base-Pairing Interactions”,
B. Yang, R. R. Wu, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 117, 14191-14201 (2013).
DOI: 10.1021/jp405105w
-
“Base-Pairing Energies of Proton-Bound Heterodimers of Cytosine and Modified Cytosines: Implications for the Stability of DNA I-Motif Conformations”,
B. Yang and M. T. Rodgers, J. Am. Chem. Soc. 136, 282-290 (2013).
DOI: 10.1021/ja409515v
- “Metal Cation Dependence of Interactions with Amino Acids: Bond Dissociation Energies of Rb+ and Cs+ to the Acidic Amino Acids and Their Amide Derivatives”,
P. B. Armentrout, B. Yang, and M. T. Rodgers, J. Phys. Chem. B 118, 4300-4314 (2014). (Graphics chosen for issue cover)
DOI: 10.1021/jp5001754
- “Alkali Metal Cation Interactions with 15-Crown-5 in the Gas Phase: Revisited”,
P. B. Armentrout, C. A. Austin, and M. T. Rodgers, J. Phys. Chem. A 118, 8088-8097 (2014). A. Welford Castleman Festschrift
DOI: 10.1021/jp4116172
- “Influence of the d Orbital Occupation on the Structures and Sequential Binding Energies of Pyridine to the Late First-Row Divalent Transition Metal Cations: A DFT Study”,
H. Nose and M. T. Rodgers, J. Phys. Chem. A 118, 8129-8140 (2014). A. Welford Castleman Festschrift
DOI: 10.1021/jp500488t
- “Alkali Metal Cation Binding Affinities of Cytosine in the Gas Phase: Revisited”,
B. Yang and M. T. Rodgers, Phys. Chem. Chem. Phys. 16, 16110-16120 (2014).
DOI: 10.1039/C4CP01128G
- “Alkali Metal Cation-Hexacyclen Complexes: Effects of Alkali Metal Cation Size on the Structure and Binding Energy”,
C. A. Austin and M. T. Rodgers, J. Phys. Chem. A 118, 5488-5500 (2014).
DOI:10.1021/jp502275q
- “Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies”,
R. R. Wu, B. Yang, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 118, 14774-14784 (2014).
DOI: 10.1021/p508019a
- “Base-Pairing Energies of Protonated Nucleobase Pairs and Proton Affinities of 1-Methylated Cytosines: Model Systems for the Effects of the Sugar Moiety on the Stability of DNA i-Motif Conformation”,
B. Yang, A. A. Moehlig, C. E. Frieler, and M. T. Rodgers, J. Phys. Chem. B 119, 1857-1868 (2015).
DOI: 10.1021/acs.jcpb.5b00035
- “Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyadenosine and Adenosine: IRMPD Action Spectroscopy and Theoretical Studies”,
R. R. Wu, B. Yang, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 119, 2795-2805 (2015).
DOI:10.1021/jp509267k
- “Guided Ion Beam and Computational Studies of the Decomposition of a Model Thiourea Protein Cross-Linker”,
R. Wang, B. Yang, R. R. Wu, M. T. Rodgers, M. Schäfer, and P. B. Armentrout, J. Phys. Chem. B 119, 3727-3742 (2015).
DOI: 10.1021/jp512997z
- “Intrinsic Affinities of Alkali Metal Cations for Diaza-18-Crown-6: Effects of Alkali Metal Cation Size and Donor Atoms on the Structure and Binding Energies”,
C. A. Austin M. T. Rodgers, Int. J. Mass Spectrom. 377, 65-72 (2015). History of Mass Spectrometry Special Issue.
DOI:10.1016/j.ijms.2014.06.033
- “Infrared Multiple Photon Dissociation Action Spectroscopy of Sodium Cationized Halouracils: Effects of Halogenation on Gas-Phase Conformation”,
C. M. Kaczan, A. I. Rathur, R. R. Wu, Y. Chen, C. A. Austin, G. Berden, J. Oomens and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 378, 76-85 (2015). Veronica M. Bierbaum Honor Issue
DOI:10.1016/j.ijms.2014.07.016
- “Base-Pairing Energies of Protonated Nucleoside Base Pairs of dCyd and m5dCyd: Implications for the Stability of DNA i-Motif Conformations”,
B. Yang and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 26, 1394-1403 (2015).
DOI: 10.1007/s13361-015-1144-8
- “On the Mechanism of Phosphodiester Backbone Cleavage in Gaseous RNA”,
C. Riml, H. Glasner, M. T. Rodgers, R. Micura, and K. Breuker, Nucleic Acids Res. 43, 5171-5181 (2015).
DOI: 10.1093/nar/gkv288
- “N3 and O2 Protonated Tautomeric Conformations of 2′-Deoxycytidine and Cytidine: Coexist in the Gas Phase”,
R. R. Wu, B. Yang, C. E. Frieler, G. Berden, J. Oomens, and M. T. Rodgers, J. Phys. Chem. B 119, 5773-5784 (2015).
DOI: 10.1021/jp5130316
- “Base-Pairing Energies of Proton-Bound Dimers and Proton Affinities of 1-Methyl-5-Halocytosine: Implications for the Stability of the DNA i-Motif”,
B. Yang and M. T. Rodgers, J. Am. Soc. Mass Spectrom. 26, 1469-1482 (2015).
DOI: 10.1007/s13361-015-1174-2
- “Diverse Mixtures of 2,4-Dihydroxy Tautomers and O4 Protonated Conformers of Uridine and 2’-Deoxyuridine Coexist in the Gas Phase”,
R. R. Wu, B. Yang, C.E. Frieler, G. Berden, J. Oomens, and M. T. Rodgers, Phys. Chem. Chem. Phys. Advance article (2015).
DOI: 10.1039/c5cp02227d
- “Discriminating Properties of Metal Alkali Ions towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies”,
M. T. Rodgers and P. B. Armentrout to appear in: Metal Ions in Life Sciences, Vol. 16, Springer, Eds. A. Sigel, H. Sigel, and R. K. O. Sigel, 2015.
|
|
|
|
|